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Introduction
When a rocket travels through the air, the surface parts get heated by ”the friction with the air”. In a 
naivistic view, the air molecules may be thought of as small particles that hits the rocket 
unelastically, whereby the particle kinetic energy is converted to heat. This naivistic description is 
may help the intuitive understanding of aerodynamic heating, but it is not in any way a realistic 
model of the real phenomena for three reasons:

1. The air flows around the rocket, and the temperature of the airflow depends on local 
conditions. The surface of the rocket does not reach a temperature, but rather a temperature 
distribution.

2. The aerodynamic heating does not really originate from friction, but rather from heat 
transfer from the heated airflow to the rocket body surface, and this heat transfer from the 
airflow to the surface of the rocket is not perfect.

3. The surface heating is a dynamic process, where the heat capacity of the surface introduces a 
lag in the temperature of the surface with respect to that of the flow.

In the following, a simplified surface temperature calculation based on a semi empirical method, is 
outlined. The method is based on [1], but extended to cover stagnation points and two dimensional 
flow. 
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The basic method
The skin temperature of the rocket depends on the net heat transfer into the rocket surface, and the 
heat capacity of the rocket surface. Since this depends on local conditions, an exact solution of the 
temperature distribution requires a full three dimensional thermodynamic calculation of vast 
complexity. It is however reasonable to assume that the lateral (along the rocket body) temperature 
gradient is much smaller than the transversal (through the skin) gradient. It is thus reasonable to 
neglect the lateral heat flow completely. In this way the temperature at any station along the rocket 
surface can be calculated independently, and these calculations can then be combined into a full 
temperature profile.

Note that the description of the basic method is more or less a rewrite of the corresponding 
description in [1].

Heat balance

The heat flux (energy pr. unit area pr. unit time) from the surrounding air into the skin of the rocket 
body may be expressed as:

Q̇1=h(T B−T S )

Where TB is the temperature of the boundary layer and  TS is the temperature of the surface of the 
rocket. The heat transfer coefficient h has been determined experimentally by Eber [2].

It is assumed that Q1 is the dominant contributor of heat flow into the skin and other sources are 
therefore neglected.

The rocket looses some heat however due to radiation. The radiation loss may be expressed as:

Q̇2=ϵσ T S
4

where  = 5.67*10-8 W/m2/K4 is the Stefan-Boltzmann constant and ϵ is the emissivity of the skin.

During a time interval dt, the heat balance for the skin temperature can be written as:

G dT S=dt (Q̇1−Q̇2)⇔

G
dT S

dt
+hT S+ϵσ T S ⁴=hT B

Where G is the ”skin heating capacity” [J/m2/K], the product of the specific heat of the skin 
material, the density of the skin material and the thickness of the material:

G=cρ τ

For an object that flies at constant velocity, the term dT S /dt→0 over time, and the skin reaches an 
equilibrium temperature determined by:

hT S ,eq+ϵσT S , eq ⁴=hT B⇔

h=
ϵσ T S , eq ⁴
(T B−T S ,eq)
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Boundary layer temperature

When the flow is isentropically brought to rest, the temperature of the flow will be the so called 
stagnation temperature. This mimics the situation at the nose cone apex, as for the rest of the rocket 
body, the flow will be brought partially to rest by means of skin friction, and the boundary layer 
temperature will be somewhat lower than the stagnation temperature.

The stagnation temperature (also known as the total temperature) Tst relates to the free stream 
temperature Tfs and velocity Vfs in the following way:

T st=T fs+
V fs ²

2C p

assuming that the specific heat capacity at constant pressure - Cp - is independent of temperature. As 
this is not entirely true, a slight correction may be necessary at high velocities.

The boundary layer temperature relates to the stagnation temperature in the following way (by 
definition):

K=
T B−T fs

T st−T fs

K is known as the temperature recovery factor. K was experimentally determined by Eber [2] for 
conical bodies. Eber found that for cones with vertex angles of 20 – 50 degrees, a value of K=0.89 
may be used over the entire velocity range. The boundary layer temperature rise may then be 
expressed as:

(T B−T fs)=K (T st−T fs)=K (
V fs ²

2C p

)

Eber empirically modeled the heat transfer as:

h=(0.0071+0.0154 √β)
k
l
R0.8

Here, k is the thermal conductivity of air, l is a characteristic length - defined by Eber as the length 
of the cone, R is the Reynolds number and β is the vertex angle of the cone (in radians).

Substituting for the Reynolds number yields:
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h=(0.0071+0.0154√β)
1

l0.2
(ρ fsu fs)

0.8 k

μ
0.8

where µ is the dynamic viscosity of air. 

Composite skin temperature profile

The simplified method may be used to calculate the skin temperature at several stations of a nose 
cone, then combining them to a full temperature profile. This is straightforward, assuming that each 
station is located an a cone surface that tangentiates the nose cone at the station. The only question 
is which reference length to use. According to [1], there is no general consensus of what l is, and 
sometime half the length of the cone is used. 

For composite temperature calculations, the somewhat conservative approach of using the surface 
length of the tangent cone, from its projected apex to the station of interest will be suggested for l as 
suggested in [3].

Limitations of the method

There are several limitations of this method. The applicable altitudes may not exceed 130000 ft (43 
km). Changes in the atmosphere properties may be significant at higher altitudes, but as  ρfs then 
decays rapidly, extrapolation to higher altitudes may be justified.

Also the method is based on measurements within a limited range of Reynolds numbers (2*10  - ⁵
2*10 )⁶ , and extrapolation outside this range may be required during application of this method.

The emissivity ϵ is 1 for a black body, but the value for real rocket skin may not be known. In [1], 
a value of ϵ=0.4 is assumed, but it is also noted that radiation losses are small compared to the 
aerodynamic heating and the use of a fixed ϵ is justified, even if the value is not fully correct.

Furthermore, the method implicitly assumes that the heat conduction within the skin material is 
instant, so that the temperature may be considered uniform within the skin. Although the heat 
conduction may be much better for solid materials – and especially for metals - than for gases, the 
difference may not be so prominent for composite materials. This may drive the need for 
introducing a purely empirical ”shortening factor” basing the calculation on a virtual skin thickness, 
smaller than the real skin thickness. For good conducting materials like aluminum, the ”shortening 
factor” may be almost 1, but for composite materials, a smaller value may be required. This leads to 
another problem: Composite materials will start to ablate when exposed to high temperatures. The 
ablation process is often followed by charring of the material thus providing the combination of 
temperature reduction, higher emissivity and higher temperature working range. Naturally, ablation 
will affect the validity of the skin temperature calculations.

Finally, the outlined method does not cover the case of β→π/2 and it does not directly cover the  
two dimensional flow around the fins.
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Extension of the method
The most severe restriction of the basic method is that it is limited to 20o <  <  50o. Simply 
extending the range down to 0o is likely to overestimate the skin temperature, while extending to  
90o is likely to underestimate the skin temperature. Overestimating the skin temperature at small 
values of is not a serious problem as this typically corresponds to a station far from the apex, 
where the skin temperature is less critical. The real issue, from a designers point of view, is the 
temperature of the apex region, where the flow is stagnant. In this region, one can use the stagnation 
temperature as an upper bound, but this may be too conservative. 

Another issue from the designers point of view is the heating of the fins, especially at the leading 
edges, where the wall thickness tend to be small.

In the general case, only two things have to be determined in order to solve the aerodynamic heating 
equation

G
dT S

dt
+hT S+ϵσ T S ⁴=hT B

The recovery factor K must be determined for the actual flow situation, and so must the heat 
transfer coefficient. The skin capacity G has the same definition regardless of the skin is that of a 
cone, a fin or a stagnation point.

Recovery factor

At the nose cone apex, the conditions must resemble that of a stagnation point, and the boundary 
layer temperature TB is assumed to equal stagnation temperature Tst hence K=1.

For cone angles approaching zero, the flow may be assumed to pass freely, hence the recovery must 
approach zero.

Although both assumptions seem fair, they are oversimplifications. At the apex – or even in the case 
of a flat plate – the air flow moves around the obstacle, and despite the ”stagnant like” conditions, 
the recovery factor remains below 1. At cylindrical conditions (  =  0o ), there is still a boundary 
layer with a temperature gradient. The recovery factor has some correlation with the skin friction, 
and can not be assumed to be zero. 

In general, the recovery factor is a function of the Reynolds number, the Mach number and the 
Prandtl number of the flow situation. For air, a Prandtl number of 0.7 may be assumed as 
representative, thus reducing the recovery factor to be a function only of local Mach and Reynolds 
numbers.

For flow over a flat plate, corresponding to the fin of a rocket, the Mach number has very little 
influence on the recovery factor, and the Reynolds only separates the cases of laminar and turbulent 
flow:

K={
3√Pr∼0.89 for turbulent flow
√Pr∼0.84 for laminar flow }

At the fins, the flow will be turbulent in any realistic case, and a value of K=0.89 may be assumed.

The condition separating laminar or turbulent flow is:
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Relok={
ρu L
μ =

u L
ν >10

6 for turbulent flow

ρu L
μ =

u L
ν <10

6 for laminar flow }
Where µ and ν are the dynamic respectively the kinematic viscosity of the air and ρ is the density of 
the air at the distance L from the nosecone. There is some controversy about the number 10  as ⁶
transition may occur unpredictally at any Reynolds number in that order.

For the flow around the nose cone, the story is slightly different. For small values of  and stations 
far from the apex, the flat plate model may be an acceptable approximation. Ebers measurements of 
recovery factors on cones show a systematic relation with  and a slight negligible variation with 
the Mach number. Knowing that Eber made his measurements around the critical Reynolds 
Number, it is interesting to see that the measurements on cones with low values of  low Mach 
numbers approach K=0.84, while they approach K=0.89 at higher Mach (and Reynolds) numbers. 
Since the difference is only about 5%, it is justifiable to ignore the difference between turbulent an 
laminar flow and simply assume that the universal value of K=0.89 is valid for  < 40 deg. For  
larger values of  there is a slight correction of 10% pr degree:

K={ 0.89 forβ<40 deg
0.89+0.001(β−40deg) forβ≥40deg}

Heat transfer coefficient

The heat transfer coefficient may be determined from steady state measurements, if the boundary 
layer temperature and emissivity is known. 

h=
ϵσT S , eq ⁴
(T B−T S , eq)

If the radiation loss is ignored, there is no heat transfer between the skin and the flow, and the 
temperature on the skin reaches the adiabatic stagnation flow temperature:
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T ad=(1+
γ−1
2

M fs ²)T fs

Where Mfs the free stream Mach number.

The adiabatic stagnation flow temperature thus represents the upper boundary for the skin 
temperature.

For rockets, the steady state conditions are unlikely to occur, and there will be a net flux of energy 
between between the skin surface and air flow. The heat transfer coefficient h relates to the Nusselt 
number in the following way:

Nu=
hl
k

where the reference length l is a representative physical dimension of the obstacle.

Compared with Ebers empirical expression for h, an empirical expression for the Nusselt number 
for  cones can be stated:

Nu=(0.0071+0.0154√β)Re
0.8 presumably for turbulent flow

For flat plates, the Nusselt Number may be expressed as [4]

Nu={ 0.664 √Re
3√ Pr ∼ 0.591√ Re for laminar flow

0.037Re
0.8 3√Pr ∼ 0.0329Re

0.8 for turbulent flow }
using the atmosphere properties at an ”average” temperature of

T avg=T fs+0.5(T skin−T fs)+0.22(T ad−T fs)

The expressions for cones and flat plates follows the same expression for turbulent flow, except for 
a scale factor. It may be convenient to merge the expressions into:

Nu=Nu flat plateΓ shape

Γ shape={ 1 for flat plates

√0.0058β+0.13+0.12e−0.07β for cones } (β in degrees)

The conversion factor for cones can be seen below. It is reasonable that the factor should limit at a 
factor of 0.5 at low values of β, which corresponds with Ebers model at its stated 20o lower range.
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Even though it is not directly mentioned, Ebers model presumably covers the case of turbulent flow 
only. There is no reason to believe that the laminar flow Nusselt number model for flat plates should 
not apply also for cones, and the shape conversion should therefore apply for both flow regimes.

For the nose cone apex, the shape may be approximated with a sphere of diameter D. Here the 
stream conditions are considered to be subsonic, even in supersonic flow, as the flow will be 
subsonic behind the normal shock wave. The heat transfer coefficient may be expressed as [5]:

h=
k sk
√νsk [ Nu

√Re sk ]√C
Where 

C=3
u0
D
[1−0.252M 0 ²−0.0175M 0 ⁴ ] For a sphere of diameter D

C=2√2
u0
D

For a wire of diameter D in cross flow

ν is the kinematic viscosity of air

u0  is the free stream velocity [m/s]

k is the thermal conductivity of air

M0  is the free stream Mach number if < 1. Otherwise it is the Mach number behind a normal shock.

Index sk indicates that properties are calculated at the skin wall temperature.

The property [ Nu

√Resk ] is derived from charts in reference [5]:

[ Nu

√Resk ]=[0.464+6.86⋅10−2(
T sk

T 0 )−8.54⋅10
−3(T sk

T o
)
2

][ Pr0.8 ]
0.4

For wire in crossflow 0 < Tsk /T0< 2

[ Nu

√Resk ]=[0.640+6.67⋅10−2(
T sk

T 0 )−8.17⋅10
−3( T sk

T o
)
2

][ Pr0.8 ]
0.4

For sphere 0 < Tsk /T0< 2

Where T0  is the free stream temperature if the free stream Mach number  < 1. Otherwise it is the 
Temperature behind a normal shock.

Skin gradient

A drawback of the original method is that it is primarily aimed at metallic skin materials with good 
thermal conduction, justifying the assumption that the calculated skin temperature is present along 
the entire wall thickness of the skin. For composite materials, this assumption may not hold, due to 
the poorer heat conduction of the material. The method can be improved by allowing a temperature 
gradient within the skin.

If the exterior side of the skin is at a temperature of TS and the interior side of the skin is at a 
temperature of Ti then there is an internal heat flux within the skin of

Q̇i=
−λ
τ (T S−T i)

The heat flux into the skin is
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Q̇=Q̇1−Q̇2≈Q1=h(T B−T S)

The assumption of uniform skin temperature is reasonable when the interior ”heat transfer” is much 
better than the heat transfer from the boundary layer to the skin:

λ
h τ
≫1

Now, assume that some amount of heat has entered the skin material. The has caused a temperature 
rise of ∆TS at exterior side of the skin and of ∆Ti at the interior side of the skin. The skin 
temperature calculation assumes uniform temperature however, and will result in a value of

̂ΔT S=
ΔT S+ΔT i

2
=
ΔT S

2
(1+ x τ)

It is clear, that if the calculation of ̂ΔT S had been done with half the wall thickness (or half 
thermal mass), it would reach the double value – or in general:

τ̂=δ τ→ ̂ΔT S=
ΔT S

2δ
(1+ x τ)

This means that ̂ΔT S=ΔT S when

δ=
(1+x τ)
2

Aplying this ”shortening factor” δ to the wall thickness τ will compensate for a non uniform 
temperature distribution within the skin. It can be seen that δ =1 corresponds to the case of uniform 
temperature distribution while δ =1/2 corresponds to the case of very poor heat conduction.

On this basis, the use of a purely empirical shortening factor is suggested:

δ=
2−e

−λ
h τ

2

Ablation

A simple ablation model can be added, by assuming that ablation happens at a known and constant 
temperature, Tablate [K], and at a known and constant heat of ablation Hablate [J/kg]. Furthermore it is 
assumed that ablation does not affect the boundary layer in any way.

In this case, the skin temperature does not exceed the ablation temperature, and at the ablation 
temperature all the heat flux into the skin is spent evaporating the material. As such, the wall 
thickness τ will reduce while the skin temperature is larger than the ablation temperature:

G
dT S

dt
=h(T B−T S )−ϵσT S ⁴+H ablateρ

d τ
dt

with {
dT S

dt
=0 for T S≥T ablate

d τ
dt
=0 for T S<T ablate }

It follows that 
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d τ
dt
={

h(T B−T S )−ϵσ T S ⁴
−H ablateρ

for T S≥T ablate ;h(T B−T S)−ϵσT S ⁴≥0

0 for T S<T ablate ; h(T B−T S)−ϵσ T S ⁴<0
}

Charring may be modeled by setting ϵ=1 .
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Appendix

Atmosphere parameters

The local speed of sound may be expressed as:

c=√ γ Pρ =√ γ RTΜ for an ideal gas

γ is the adiabatic index = 1.4 for an ideal gas

ρ is the local density of air

P is the local pressure

T is the local absolute temperature

M is the molar mass of the air = 0.0289645 kg/mol

R is the universal gas constant = 8.3145 J/mol/K

If the speed of sound cref is known at some reference temperature Tref then this can be used to 
calculate c at temperature T:

c (T )=cref √ T
T ref

Then Mach number is the velocity of the flow divided by the speed of sound:

M=
u
c

The following properties have been curve fitted from tabulated values of reference [6].

ρ(T )=
360
T
−
0.114

√T
100 K≤T≤2500 K

C p (T )=1030−0.24T +6.85⋅10
−4 t²−4.33⋅10−7T³+9.45⋅10−11T⁴ 100 K≤T≤2500K
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μ(T )=−1.00⋅10⁻ 5−1.47⋅10−9T+1.68⋅10−6√T 100 K≤T≤2500 K

ν(T )=−7.24⋅10⁻ 6+5.30⋅10−8T +7.95⋅10−11T²−8.07⋅10−15T³ 100 K≤T≤2500 K
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k (T )=−1.29⋅10⁻ 2+2.43⋅10−5T−3.39⋅10−9T²+1.88⋅10−3√T 100K≤T≤2500 K

Pr (T )=0.815−5.31⋅10−4T +7.13⋅10−7T²−3.69⋅10−10T 3+7.10⋅10−14T⁴ 100K≤T≤2500 K

The air temperature T [K] versus altitude s [m] is curve fitted from [7]:

T [ s ]={
287.954−5.03015⋅10−3s−1.2859⋅10−7s² 0m≤s≤10.0km
225.15 10km< s≤23km
242.057−2.33854⋅10−3 s+7.08133⋅10−8 s² 23km< s≤42km
−534.104+3.95468⋅10−2 s−6.0177⋅10−7 s²+2.71838⋅10−12s³ 42km< s≤81.5km
867.12−9.78603⋅10−3 s−5.75164⋅10−8 s²+8.81316⋅10−13 s³ 81.5km≤s<120km

}
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The free stream Mach velocity c [m/s] versus altitude s [m] is curve fitted from [7]:

c [ s ]={
340.234−3.05528⋅10−3 s−6.35237⋅10−8s²−2.91745⋅10−12 s³ 0m≤s≤10km
300.8 10km< s≤23km
−97.435+5.121⋅10−2 s−2.469⋅10−6 s²+5.269⋅10−11 s³−4.089⋅10−16s⁴ 23km< s≤42km
287.23−6.725⋅10−3s+4.103⋅10−7 s²−6.824⋅10−12 s³+3.371⋅10−17 s⁴ 42km<s≤82km
−8698.8+3.91cdot 10−1s−6.29⋅10−6 s²+4.41cdot 10−11 s³−1.13⋅10−16 s⁴ 82km≤s<120km

}
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The air pressure P [mBar] versus altitude s [m] is curve fitted from [7]

P [ s ]={
exp (4.43165⋅10−14 s³−2.28553⋅10−9s²−1.14097⋅10−4 s+6.91509) 0m≤s≤25km
exp(−2.28179⋅10−14 s³+3.34063⋅10−9 s²−2.84655⋅10−4 s+8.73033) 25km<s≤75km
exp(4.44813⋅10−14 s³−1.13434⋅10−8 s²+7.62651⋅10−4 s –15.5981) 75km< s≤120km }

The air density ρ [kg/m³] versus altitude s [m] is curve fitted from [7]

ρ[ s ]={
exp(4.88158⋅10−18 s⁴−1.808⋅10−13 s³+2.432⋅10−11 s²−9.693⋅10−5 s+0.1922) 0m≤s≤25km
exp(−6.034⋅10−19+1.035⋅10−13−5.746⋅10−9 s²−2.21⋅10−5 s−0.396) 25km< s≤75km
exp(−1.004⋅10−18 s⁴+4.440⋅10−13s³−7.137⋅10−8 s²+4.773⋅10−3 s−121.84) 75km< s≤120km }
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Properties behind a normal shock

The atmosphere properties behind a normal shock relates to the free stream values in the following 
way:

P0
P fs

=
2 γM fs

2−(γ−1)

γ+1
Static pressure

T 0
T fs

=
[2γM fs

2−(γ−1)][(γ−1)M fs ²+2 ]

(γ+1)²M fs ²
Static temperature

ρ0
ρ fs
=
(γ+1)M fs ²

(γ−1)M fs ²+2
Density

Pt0

Ptfs

=[ (γ+1)M fs ²

( γ−1)M fs ²+2 ]
γ

γ−1 [ (γ+1)
2γM fs ²−(γ−1) ]

1
γ−1

Total pressure

T t0

T tfs

=1 Total temperature

M 0=
(γ−1)M fs

2 +2

2 γM fs ²−(γ−1)
Mach number
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