
MIT Authorization 
Management

Jim Repa and Paul Hill

May 2, 2008

Infrastructure Software Development and 

Architecture



The Roles Database at MIT

• Working system, has been in production 

at MIT since 1998 

• Controls access at coarse and fine 

granularity within various systems and 

applications at MIT, including 

– SAP financial (spending, approving 

requisitions, approving travel 

documents, approving invoices, 

reporting, etc.) 

– HR (various HR transactions, reporting) 

– Student Systems (graduate admissions, 

undergraduate admissions, registration, 

and financial aid) 

– Environment Health and Safety (training 

reporting, laboratory space recording,…) 

– Central services such as the Warehouse, 

MIT ID system, Master Department 

Hierarchy, Roles Database, …



Guiding Principles

• Central authorizations repository - feeds data to other systems, which in 

turn enforce the authorizations 

• Authorizations are defined in understandable business terminology, not 

arcane technobabble of each system. Define "functions" (transactions or 

roles for which authorizations should be assigned) at the appropriate level

• Maintenance of authorizations are distributed to departments, labs, and 

centers - keep the maintenance activities close to the people who 

understand the business needs. 

• A single authorization can feed more than one system, e.g., financial 

reporting authorizations control access to reporting both in SAP financial 

system and in data Warehouse



New rules-based enhancement -
principles

• Use rules-based system (under development) for assigning "implied" 

authorizations based on known attributes about people. This 

component complements, but does not replace the existing system for 

assigning authorizations to specific individuals 

• Decide where rules are appropriate, but do not overuse them. Rules 

work for access to some resources (e.g., access to Library materials 

and downloadable licensed software) but individually-assigned 

authorizations are appropriate for other resources (financial and HR 

transactions)



3 Part Authorizations

Examples:
Joe + Can Access + Oxford English Dictionary Online
Jane + Can Download + MS Office 2007
John + Can Modify Voice Mail Forwarding + 6172589850
Jerry + Can Create Functions + in category HR
Juan + Can spend and commit + on cost object Q678543



Simple building blocks, complex 
behavior 

• Categories contain functions

• Each function is associated with a particular type of qualifier

• More than one qualifier type can exist within a category

• An authorization has a start date

• An authorization may have an end date

• A person may have the ability to grant an authorization to 
others

• A Function can have child Functions. (inheritance)

• Qualifiers are organized into hierarchies. (inheritance)



How authorizations are distributed and 
enforced

Two different models employed by various applications:

1. Extract appropriate authorization information periodically, either 

through Oracle database queries or other methods, and cache the 

data within the application's own database 

2. Look up Authorizations in real time using a web service, direct 

connection to the Oracle database, or other interface (Note that 

shadow tables and indexes are structured so that authorizations can 

be looked up quickly, without having to do a recursive tree traversal 

every time we look up an authorization.)



Why 3-part authorizations and not 
simple groups or attribute pairs? 

• Authority to do various transactions naturally falls into 3-part structures. 

• Reporting, spending, hiring, downloading, updating data, and other activities 
naturally has a "verb" part and an "object" or some limited area or set of objects 
where the person is allowed to do the transaction. 

• Membership in a group hides or ignores the Function+Qualifier nature of most 
activities that are controlled by authorizations or permissions

• We can think of the set of people who are allowed to perform function F with 
qualifier Q as a virtual group. Within the Roles DB at MIT, we don't actually 
define an object to represent that group, but one could think of it that way.

• When you define Functions and separate Qualifiers, it is easier for an Auditor or 
administrator to review the permissions of the people who own Authorizations 
than it is if you're just given a list of groups with group memberships.

• Groups are not semantic. The meaning at best may be captured in the name if a 
naming convention is used. Remember, naming is hard.



Why not more than 3 parts?

• Our experience is that almost all permissions can be 

broken down to Person + Function + (single) Qualifier. 

• Too many qualifiers usually means that you're not 

thinking of Functions at the right level of abstraction. 

• A few hypothetical counter-examples have shown up in 

our actual use cases. (We are planning a small 

extension to accommodate the needs of this small 

number of cases that needs another dimension.) 





Data modeling for implied 
authorizations

• Design a rules facility that is simple enough to build and maintain without years 
of development, yet versatile enough to cover reasonable set of use cases 

• For "conditions" (attributes) that determine who is included in a rule, use data 
organized into 3-part "relations", with a subject, verb/connector, and object, 
e.g., 

– ("Username JOEUSER", "Is a current student", "Department of Biology") 

– ("Username FREDUSER", "Is a current employee", "Dept. of IS&T") 

– ("Username SUE", "Has been certified", "Training xyz: Use of radioactive 
materials") 

• Each part of the triplet represents a (i) person, (ii) previously defined 
function/relation/connector, (iii) previously defined object of a type that matches 
the function/relation/connector component. 



Rules have 4 main fields. 

Current model-in-progress identifies 4 types of rules. Each rule 

(regardless of type) has 4 main parts: 

– Conditional function/relation/connector

– Conditional object or branch of a tree of objects 

– Implied function (what transaction a person will be permitted 

to do) 

– Implied qualifier (area or object for which the person is 

permitted to do the implied function)



Usage of rules

• Rules will be evaluated periodically (nightly or more frequently) to 

create implied Authorizations 

• Consuming applications will use an interface or web service 

pointing to the middleware component to ask questions about a 

person and his/her implied Authorizations. 

• The evaluation of rules will be handled by the middleware and 

backend database, and the consuming application does not need to 

know about the prerequisite conditions or rules. 

• The consuming application does not need to know whether the 

actual implied authorizations are physically stored in a database or 

built on-the-fly.



Usage of rules (2)

• A UI will be made available for specially-

authorized administrators (in each application 

area) to maintain rule definitions. 

• An interface will also be built (web service or 

other) so that a consuming application can 

integrate rule-maintenance with its other 

functionality. 



APIs (SOAP/WSDL), done

• isUserAuthorized – (username, category, function, and qualifier_code) 
return a TRUE/FALSE answer 

• getUserAuthorizations – (username, category, [function_id]) return a list of 
authorizations for the person. 

• createAuthorization (username, category, function, qualifier_code, 
start_date, expiration_date, […]) 

• updateAuthorization (authorization ID, fields to be updated) 

• deleteAuthorization (authorization ID)

• listFunctionCategories () Lists existing Function Categories 



Planned APIs (SOAP/WSDL)

• createFunction Given the components of a Function, create a new 
Function. 

• updateFunction Update one or more fields for an existing Function. 

• deleteFunction Delete an existing Function. 

• addFunctionParent Add a parent/child connection between two 
functions. 

• deleteFunctionParent Delete a parent/child connection between two 
functions.

• createFunctionCategory Create a new category for functions 

• updateFunctionCategory Update the description or other attribures 
of an existing category



Planned APIs (2)

• deleteFunctionCategory Delete a category for functions 

• createQualifierType Create a new qualifier type, along with a root 
node. 

• deleteQualifierType Delete a qualifier type.

• createQualifier Create a new Qualifier, including its connection to a 
parent Qualifier 

• updateQualifier Update one or more fields for an existing Qualifier 

• deleteQualifier Delete an existing Qualifier 

• addQualifierParent Add a qualifier parent/child relation 

• updateQualifierParent Attach a qualifier to a different parent 



Planned APIs (3)

• deleteQualifierParent Delete a qualifier parent/child relation (must 
not be the only parent of the child qualifier) 

• addQualifiertype Add a new Qualifier Type

• updateQualifierType Updates attributes of a Qualifier Type 

• deleteQualifierType Delete a Qualifier Type 

• addImpliedAuthRule Add a rule for implied authorizations 

• deleteImpliedAuthRule Delete a rule for implied authorizations 



Info about APIs

• Web Service interfaces to the Roles Database -

http://web.mit.edu/repa/www/roles_ws1.html

• https://authz.mapws.mit.edu/uaws/services/ua?wsdl

• https://map-test-ws1.mit.edu/rolesws/services/roles?wsdl

http://web.mit.edu/repa/www/roles_ws1.html
https://authz.mapws.mit.edu/uaws/services/ua?wsdl
https://map-test-ws1.mit.edu/rolesws/services/roles?wsdl
https://map-test-ws1.mit.edu/rolesws/services/roles?wsdl
https://map-test-ws1.mit.edu/rolesws/services/roles?wsdl
https://map-test-ws1.mit.edu/rolesws/services/roles?wsdl
https://map-test-ws1.mit.edu/rolesws/services/roles?wsdl


References

• MIT's Roles Database: Parts of an Authorization -

http://web.mit.edu/repa/www/roles_auth_parts.html

• Storing and Presenting "Relations" Data at MIT -

http://web.mit.edu/repa/www/relations_db_notes.html

• MIT Roles - http://roles.mit.edu/

• Roles web application -

https://rolesapp.mit.edu/rolesclient/rolesui.html#

(requires authentication)

http://web.mit.edu/repa/www/roles_auth_parts.html
http://web.mit.edu/repa/www/relations_db_notes.html
http://roles.mit.edu/
https://rolesapp.mit.edu/rolesclient/rolesui.html


Questions?

The end



Extra slides

Ignore the man behind the curtain



An "Authorization" consists of three 
parts:

1. a person 

2. a function

3. a qualifier (an organizational, financial, or other 

unit which defines the area, object, or set of 

objects where the person is authorized to 

perform the function)



How authorizations are structured

• Person + Function + Qualifier 

• When creating or modifying an Authorization

– pick person from a pre-existing list (loaded each night 
from warehouse)

– pick Function from a pre-existing list

– pick Qualifier from a pre-existing list 

• An Authorization also has some other fields, including start 
date (usually same as the day it was assigned), end date 
(usually null, i.e., Authorization remains in effect until it is 
explicitly deleted), grant flag (if turned on, the owner of the 
Authorization can assign it to others) 



Functions

• Functions are grouped into Categories (where 

each category represents an application area). 

Functions are maintained within the Roles 

Database by a small set of administrators. (Many 

people can maintain Authorizations; very few can 

maintain Functions). 

• A Function can have child Functions. (inheritance)



Qualifiers

• Qualifiers are of various types (e.g., HR Org Units, financial Profit 
Centers and Cost Objects, academic majors, telephone numbers at 
MIT, etc.). 

• Each Function is associated with a specific Qualifier Type. When you 
create an Authorization and pick a Function, you see a pick-list of only 
the appropriate Qualifiers, which are (i) of the appropriate type and (ii) 
are available to you based on your authority to create Authorizations.

• Qualifiers are organized into hierarchies (not strict hierarchies, since it 
is possible but rare for a Qualifier to have more than one parent). 
(inheritance)

• Most Qualifiers are fed from other systems (e.g., HR Org Units, 
financial hierarchies of objects, laboratory "room sets" and individual 
rooms). A few Qualifier types are maintained via an administrator's UI 
within the Roles DB itself.


