Calibration of ACIS Timing Modes

(primarily Dick Edgar, SAO)

Definitions:

- Nominal Timed Exposure (TE) mode
 - 3.2 sec frame time, 40 μsec/row transfer speed
 - Can be reduced to 3 sec for single CCD operation
- TE mode with a subarray
 - Same transfer speed
 - Readout fewer rows, efficient frame time as low as 0.3 sec
 - Frame time as low as 0.1 sec with additional dead time
- Continuous Clocking (CC) mode
 - 1-D spatial resolution, 2.85 msec/row transfer speed
- Not timing modes
 - Faint, Very Faint, Graded telemetry formats
 - Spatial Windows filter events to avoid telemetry saturation

Status of Timing Mode Calibration

- Subarrays currently not separately calibrated, use standard TE mode products
 - CTI depends on sacrificial charge, will be lower for shorter frame times, impact not known
 - Often used with gratings positioned near readout, where impact should be minimal
- CC mode currently not separately calibrated
 - Pipeline assumes all events are at target position, applies TE mode calibration
 - CC-mode-specific CTI correction is in progress
 - Additional QE correction being measured

CC Mode vs TE Mode

- Slower transfer speed (2.85 ms vs. 40 μs)
 - Trap time constants (measured in TE mode)
 - 4% 60 μs, 46% 400 μs, 26% 2 ms, 24% > 3 s
 - CTI is lower/better in CC mode than TE mode
 - Much more charge is re-emitted into trailing pixels
- 1-D position information sacrificed for faster timing
 - Source location in CCDY direction cannot be determined from events
 - Must be assumed from target RA, Dec and/or grating order sorting
- Until Nov 2009, more restrictive grade filter used onboard in CC mode, QE loss due to grade morphing

Uncorrected full CCD calibration source spectra

CTI Correction in CC Mode

- Same software as TE Mode
 - Different distribution of charge traps, need new trapmaps and trailing fraction
 - Assume same energy dependence
- Primarily concerned with CC + gratings
 - Accurate gain calibration for common setups
 - Precise CCD response calibration not required

Mapping Charge Loss

Use pulseheight in the first trailing pixel as a proxy for CCDY

Mn-Kα line near framestore

- Fit slope, intercept, endpoint for each column
- Endpoint gives max trap density
- Assuming integrated trap density linear vs chipy, and zero at readout
- Slope gives charge trailing fraction

Testing with HETG

- Tested using HETG observation of Her X-1
- Use CHIPY coordinates estimated from order sorting

Her X-1 order sorting plot

Remaining issues with CC mode QE

- Loss of events due to grade morphing into bad grades is stronger in CC mode than TE mode
- Before Nov 2009, strict onboard grade filter
 - CTI correction cannot recover lost events
- After Nov 2009, more grades telemetered
 - CTI correction recovers many events
- Difficult to measure remaining differences due to pileup and background subtraction issues