Institute of

I I I H B Massachusetts
Technology

BLACKBOARD 9.1 EXPERIMENT:
ANALYSIS AND RECOMMENDATION

Derek Jaeger
Education Systems, IS&T
August 12th, 2011



INTRODUCTION

At the direction of the Steering Committee for Learning Management Systems, IS&T field-tested a
customized version of the Blackboard 9.1 Learning Management System in Spring 2011. Fourteen
courses spanning six disciplines were included in this evaluation, representing the participation of
thirty-three course administrators and over six hundred MIT Students.

In order to mitigate the dissonance often associated with product migrations, the version of
Blackboard 9.1 implemented at MIT was heavily customized to follow a workflow logic closely
paralleling that of Stellar, MIT’s current Sakai-2 based Learning Management System. In addition
to following or complementing Stellar workflow as closely as possible, the application Ul was also
customized to present a look and feel that was consistent with the production Stellar environment.

As part of this evaluation, a rigorous technical assessment of the Blackboard platform was
conducted, and feedback was collected from course administrators and student users regarding
their experience with the application. This document presents the highlights of our Blackboard
technical assessment, as well as an overview of the feedback gathered from users via focus group
sessions and online surveys.

The results of our technical assessment are consistent with community feedback, and suggest
strongly that at this time Blackboard is not a viable LMS option for MIT. This conclusion is
informed by numerous technical drawbacks documented by the development team responsible for
supporting and maintaining Blackboard at MIT, coupled with a number of shortcomings reported
by users in comparison with Stellar.

The recommendation at this time is to halt further experimentation with the Blackboard platform
and shift resources to the continuing development of the Modular Service Framework, which is
intended to gradually replace existing Sakai-2 based Stellar functionality with a set of discrete,
flexible web services driven by a common data framework and based on a standardized set of APIs.
This document is organized as follows:

Part | presents a technical analysis of the system

Part Il presents feedback gathered from the community

Part lll presents the final recommendation, coupled with an overview of the Modular Service Framework



Part I: TECHNICAL ANALYSIS

The technical analysis of Blackboard 9.1 revealed several significant issues with respect to the
product, highlighted by shortcomings documented within the following areas:

=  Supportability

= Maintainability

=  Core functionality

=  Extensibility and customizability
= Value-added functionality

Each of these areas is discussed in order in the following narrative.

A. SUPPORTABILITY
The ability to support the application in production while addressing performance bugs

General:

¢ The Blackboard application operated more or less consistently during the evaluation, with
isolated exceptions. However, it is worth noting that the course load during the evaluation was
comparatively light, as it corresponded to limited departmental use-case representation.

¢ Individual technical support interactions with our primary Blackboard technical contact, George
Kroner, were useful, although he and his team mentioned many features of Blackboard that
were only documented on an internal corporate wiki and therefore not available to us.

¢ Blackboard has a broad user community, and collaborating with other users via the Blackboard
mailing lists is generally straightforward.

Difficulties:

¢ Backboard’s response to and resolution of bugs identified within the core software is slow. As
customers, we do not have access to the core code, and are dependent on Blackboard's
development cycle, over which we can exercise limited control. This hinders our ability to
address key bugs and significantly erodes response/remediation time in comparison to the
process followed within Stellar.

¢ Product documentation has been difficult to find, poorly organized, inconsistent, sometimes
obsolete, and occasionally inaccurate. Examples:

1. The online documentation is split across two websites (edugarage.com and
behind.Blackboard.com) and several sections (knowledge base, forum answers, and PDF
document library) only some of which are actually searchable. Text search within PDF
documents, for instance, is completely unsupported. Blackboard has acknowledged that



lack of adequate documentation is a common complaint among users, and that they are
“actively developing” improved documentation architecture that will “unify, centralize, and
index all of Blackboard’s existing resources”. No time line has been specified for completion
of such an overhaul.

2. The Blackboard Knowledge Base contains inaccurate information regarding critical aspects
of customization support: we found that the documented method of exempting certain
custom files from being deleted during upgrades was applicable only to older versions of
Blackboard.

3. According to our primary Blackboard technical contact, George Kroner, the Custom
Authentication documentation for release 9.0 contained incorrect information about the
required Java interface. As of the last date of our use of the documentation, this
information is still referenced for release 9.1SP3 and beyond. In subsequent discussions,
Blackboard has stated that inadequate support for custom and modular authentication
systems is a broad-based pain point, adding that “changes to Blackboard’s authentication
architecture [are] planned for later this year”.

B. MAINTAINABILITY
The ability to maintain the product while managing upgrades and adapting to changes

Difficulties:

The upgrade path is difficult at best. Service pack and license upgrades require rolling back key
settings and merging them back in later—a time-consuming and tedious process. As an
example, our custom authentication module, which is required for Touchstone authentication,
is particularly impacted by this limitation. Blackboard documentation directs users to remove
any custom authentication modules before applying application-level upgrades, and reinstalling
them after maintenance is completed. In practice, this is a protracted and significantly error-
prone process.

Custom files and directories are deleted during upgrades by default, and Blackboard template
files (which are intended to be edited) are overwritten during upgrades. Both of these factors
work in conjunction to significantly complicate the upgrade process, essentially requiring that
modifications be maintained as a set of diffs that are reapplied after the upgrade. In our
experience, upgrades also tend to cause port conflicts until changes are reapplied. Blackboard
acknowledges that “the altering of template files is a known issue with the upgrade process”
and states that this behavior “is to be analyzed as part of the installer/upgrader work for 2012”.
No specifics have been offered regarding either the analysis process itself or the expected
timeline for actual remediation of issues identified during the analysis process.

Blackboard upgrades frequently break third party Blackboard Building Blocks. As an example,
we experienced significant issues with both the student photo roster and Echo360 Building
Blocks. These issues are discussed further in section E: Value-added functionality. Blackboard
acknowledges that “we have dropped the ball on ensuring forward compatibility of third party
extensions relying on Building Block APIs” and suggests a planned remedial approach that



includes “implementing improved instruments in Product Development as part of our
application build processes”. Specific improvements have not been enumerated, and no
timeline has been specified with respect to implementation.

C. CORE FUNCTIONALITY
The quality of built-in application features

Difficulties:

¢ Access control is inconsistent. We found several significant bugs with respect to guest access, as
well as general access to the Blackboard Content Collection.

¢ The built-in Blackboard calendar is inadequate for our needs and represents a step down from
current Stellar calendaring functionality. As an example, dated materials and assignments do
not appear on the calendar—a serious user-facing shortcoming. This is a broad-based issue that
would require significant development time to address.

¢ The built-in Blackboard gradebook is also inadequate for our needs and does not meet user
expectations. Prior to any future experimentation with Blackboard 9.1, a more functional
alternative to this component would need to be deployed.

e Permalinking (the ability to access a particular view via bookmarked URL) is not adequately
supported—a significant issue given the requirement to redirect Stellar traffic for evaluation
participants by linking their Stellar course listings to the appropriate Blackboard pages. The
frames utilized by the application preclude bookmarking, and the URL of any given frame does
not return the user to the same view. This is a significant usability issue. In addition, the URLs
are based on internal unpredictable database ID numbers as opposed to external course IDs. As
a result, there is no way to ascertain in advance what the URL for a particular course would be.
Blackboard suggests using "deep linking" to address this issue, but this cannot be characterized
as a straightforward or preferred approach. For context, the Stellar URL for the course ESD.40
for SP 2011 is:

http://stellar.mit.edu/S/course/ESD/sp11/ESD.40
while the Blackboard equivalent is:

https://stellarng.mit.edu/webapps/portal/frameset.jsp?tab_tab_group_id=_2_1&url=/webapps
/Blackboard/execute/courseMain?course_id=_3661 1

Blackboard acknowledges that this issue is a confirmed common paint point among “a number
of clients”. They add that “the need is under consideration for future releases, though no
specific roadmap commitment exists yet”.



D. EXTENSIBILITY AND CUSTOMIZABILITY
The ability to customize and extend built-in functionality

General:

¢ Extensive user-level customization is possible via utilization of the system admin screens in the
Ul. Custom theming, permission filters, and the default course template itself can be largely
managed without root access to the application server (although isolated bugs in the product
do require root-level control in certain instances).

¢ Certain types of automation are straightforward. We developed a script to populate and
synchronize the Blackboard courses and their memberships with data from our registration feed
using Blackboard's built-in snapshot tool. This was a relatively simple solution that functions
guite adequately.

Difficulties:

¢ Blackboard Custom Authentication support does not integrate seamlessly with the rest of the
product. While it was least somewhat straightforward to implement the module for
Touchstone authentication, the dependency on this module manifests itself in surprising ways.
As an example, many of the product's configuration files must be updated to refer to the new
authentication jar file, despite the file having nothing to do with authentication (for instance,
the Blackboard snapshot tool runs on the application server and does not send any request over
HTTP.) These dependencies cause certain seemingly unrelated parts of the product to fail,
especially subsequent to upgrades. Blackboard has stated that this particular issue was
addressed in Service Pack 8. However, this update was released in the closing weeks of the
Spring 2011 semester, and required, according to Blackboard, a complete “re-code of [MIT’s]
custom authentication module” in order to allow it to be tested against the new framework.
Installation of SP8 would also have required a complete uninstall and reinstall of our other
customizations, potentially introducing new points of failure within application behavior, as had
been our experience with past Blackboard upgrades. Additionally, installing SP8 would not have
resulted in any tangible benefit to users, as we already had in place a functioning Custom
Authentication module that reconciled the idiosyncrasies nominally accounted for in SP8. With
respect to our particular scenario, the primary potential benefit of SP8 would have been
possible simplification of the update process for post-SP8 upgrades. Due to the timing of the
release, the work involved in recoding our authentication module, the service disruption
required to uninstall and reinstall all of our customizations, the risk of introducing new points of
failure during the closing weeks of the semester, and the lack of tangible benefit to our users
during the remainder of the experiment, SP8 was not installed, and the extent of the utility it
could potentially have provided cannot empirically be assessed at this stage.

¢ The web Ul relies heavily on XHTML frames that do not pass validation tests, and omit much
semantic information. We developed a custom theme for Blackboard 9.0 to address this
shortcoming, but it could not be used in Blackboard 9.1 because of a change in the Blackboard
Ul structure between versions. The theme could not identify menus by semantics (e.g., class
name), and instead had to identify them based on heuristics (e.g., "the first <li> element which
is a grandchild of a <div> element whose parent has a particular class name). Blackboard



maintains that their approach is a “perfectly acceptable practice”, and states that they do not
“find it realistic to give every single element in the DOM its own class”. While this position
negates an overly zealous approach that we had not in fact advocated (associating a class with
each individual DOM element), it does little to address the issues we identified, which could be
remediated by a adopting a more rigorous semantic approach. In any event, we encountered
several issues suggestive of the fact that theming behavior is not adequately modular within the
application.

¢ We were expecting basic extensibility requirements to be addressable via limited development,
but this was not the case. General-purpose functionality such as inclusion of a copyright
warning screen or the ability to add class materials due dates to the course calendar cannot be
readily accommodated without complicating the already difficult product upgrade path, and
there is no way to add such extensibility in Blackboard 9.1 without compromising
maintainability. According to George Kroner, our main Blackboard technical contact, there do
exist solutions that involve using undocumented hooks into built-in functionality and duplicating
certain Blackboard pages. This is unlikely to be a feasible or desirable approach for us. In any
case, very little of our requirements are addressable via small-scale development within the BB
9.1 framework.

E. VALUE-ADDED FUNCTIONALITY
The quality of plug-ins and third-party Building Blocks or components

General:

The Blackboard Building Block model, which is intended to augment core functionality via an open-
code approach relying on the development of application extensions, can be characterized as a
largely unregulated space that may potentially hold future promise, but is currently sub-optimal.
There is a broad heterogeneity in Building Block quality, compatibility, maintainability,
upgradeability, and pricing. Accurate information on the breadth of available Building Blocks or
disposition of certain projects is not readily available. For context, no meaningful comparison can
be made between the Blackboard Building Block community and the Confluence plugin community,
upon which we heavily rely for extending the usefulness and operational scope of our Wikis.

Difficulties:

¢ Many third-party Building Blocks are poorly categorized and difficult to find. As an example, we
needed a student photo roster Building Block and could not find any in the Blackboard Building
Block repository. We messaged other users in the Blackboard 9.1 mailing list, and managed to
obtain relevant source code via this route. We invested significant effort in evaluating the code
in order to determine its quality and applicability, followed by a comparable amount of time to
properly configure and deploy it. This particular feature should be a very common component,
yet it is neither in the core software nor readily available as an extension.

¢« When Building Blocks involve third-party software, it is in practice very difficult to determine
where to obtain support for the component. We experienced several issues with the Echo360
Building Block, and had to navigate between support streams with both Echo360 and
Blackboard technical support in order to identify workable solutions.



¢ Upgrades released by Blackboard often break Building Blocks. In our experience, even minor
version releases of the product are not backward-compatible with much of the functionality
used in a number of Building Blocks. We do not have access to information that assist help us in
determining whether such incompatibility stems from a particular Building Block using
functionality no longer supported in a particular Blackboard version release, or whether
Blackboard is explicitly breaking its own APIs. In either case, incompatibility between the core
product and product extensions renders the latter largely unreliable as a means of strategically
and systematically extending core functionality in a well-planned and maintainable manner.
Blackboard has stated that the planned launch of “new and exciting initiatives” will remedy this
scenario in the near future. One such initiative is described as a “prototype ‘compatibility
checker’ for Building Blocks”, which according to Blackboard, will be designed to check for the
compatibility of a given Building Block against a given release prior to the application of
upgrades. However, there is a high likelihood that the utility of this prototypical service will be
significantly hampered by the fact that Blackboard has been heretofore unable offer a complete
listing of available Building Blocks and their functionality and/or disposition. The lack of such
information would severely hamper the effectiveness of any compatibility-checking service.

CONCLUSION

Systemic issues associated with supporting and maintaining Blackboard 9.1, coupled with
limitations on core functionality and extensibility, render the product less than suitable to MIT’s
current needs from a technical perspective. These shortcomings are exacerbated by the relative
utility of the Blackboard Building Block model, which is not sufficiently mature to provide positive
value to users seeking to easily extend the functionality of the core product in a programmatic and
sustainable manner. Subsequent discussions with Blackboard suggest that while company is aware
of the shortcomings of the Building Block business model—an initiative that it has heavily marketed
as step toward open standards—it cannot articulate a sufficiently clear path toward remediating
these issues. The primary points of failure in the Building Block model hinge on the apparent
incompatibility of the application’s current architectural model with a true open-standard or open-
code approach, coupled with what appears to be a lack of familiarity with best practices for the
management and growth of a vibrant open-code community. These aspects of the product, which
amount to both functional and strategic liabilities, suggest strongly that Blackboard 9.1 is currently
suboptimal as either an end-to-end closed-system solution or an extensible open-code framework
for use by the MIT community.



Part Il: COMMUNITY FEEDBACK

In May 2011, online surveys were sent to 33 MIT Blackboard course administrators and 618 MIT
Blackboard student users. Two in-person focus groups were also held in order to gather additional
feedback. The results of this exercise are discussed in what follows.

RESPONSE RATE

Admin surveys: 36%
Student surveys: 14%
Focus groups : 12%

1. RESPONDENT DEMOGRAPHICS
A. Administrators

Distribution:

31% Management (15.053, 15.0810, 15.840 and 15.220AB)
22% Engineering (ESD.40 and ESD.802)

13% Aeronautics and Astronautics (16.423J)

13% Physical Education (PE.0505.1, PE.0600.1 and PE0909.1)
11% Physics (8.251)

10% Literature (21L.007, 21L.006 and 21L.310)

Role:

38% Instructor

38% Teaching Assistant

08% Course Builder

15% Other (including departmental admins)

B. Students

Distribution:

53% Management (15.053, 15.0810, 15.840 and 15.220AB)
22% Engineering (ESD.40 and ESD.802)

11% Physics (8.251)

08% Literature (21L.007, 21L.006 and 21L.310)

03% Aeronautics and Astronautics (16.423))

03% Physical Education (PE.0505.1, PE.0600.1 and PE0909.1)

Class standing:
55% Graduate
45% Undergraduate



The following sections present relevant information captured from course administrators and
students via the survey and focus groups.

2. OVERALL IMPRESSIONS

The majority of administrators and students found Stellar easier to use overall than Blackboard.
A. Overall Preferences - Administrators

= 90% preferred Stellar

= 10% preferred Blackboard

= 0% had no preference

Sample comments:

"I liked tracking when students looked at the site, photo roster, ability to selectively release data to
students”

“The main problem is not lack of features. It is usability.”
“It would be better if there was less functionality, but the critical features were stronger.”

“The numerous subcategories for functions often make it harder rather than easier to find what |
need.”

B. Overall Preferences - Students

68% preferred Stellar
13% preferred Blackboard
18% had no preference

Sample comments:

“I really prefer Stellar for its simplified layout and user interface.”

“I know [Blackboard] can do a lot more, but | just need it to be good at being a document repository
and homework submission space. If it were easier to do these things | would be delighted.”

“On your grades page, you can see comments that your instructor posted about that grade. But if
you click ‘view more’ it gets all screwed up.”

“It was harder to locate information based on class dates compared to classic Stellar.”



3. FEEDBACK ON PRIMARY BLACKBOARD FEATURE CATEGORIES

A. Content and Materials Management

= 97% of administrators found the Blackboard Content Collection difficult to use

= 92% of administrators found content management to be easier in Stellar

= 87% of administrators bypassed the Blackboard Content Collection, and managed content manually

= 57% of students preferred the content access and submission process in Stellar to that of Blackboard

Sample administrator comments:

“Content Collection is slow, and it is time consuming to import it to materials.”
“I might say that that ‘materials management’ was worse [in Blackboard than in Stellar] because |
never figured out the Content Collection and was never sure | was doing the best thing with my

materials.”

“Uploading materials took longer....I couldn't connect solutions to [problem sets] as in current
Stellar.”

Sample student comments:

“I really like the idea of having upcoming and past due assignments clearly visible on the front page,
WITH associated due dates. They almost were in [Blackboard], but hidden behind the little pull down
menus.”

“Easier to find assignments and due dates in classic stellar. Generally easier to find documents”
B. Grading

Students displayed no strong preference between accessing their grades in the Stellar Gradebook
versus the Blackboard Gradebook. However, the majority of administrators were dissatisfied with
grade management in Blackboard.

= 91% of administrators preferred the Stellar Gradebook to the Blackboard Gradebook tool

= 62% of administrators described the Blackboard gradebook tool as difficult to configure and use

=  64% of administrators considered a more robust and easier to configure gradebook tool to be
important to their needs

Sample administrator comments:

“Using this gradebook was hard so we used an excel sheet instead.”

“There's not a clear way to track make-ups (it's in the grade history but this is very cumbersome in
the way it's formatted).”

“This is probably my biggest problem [with Blackboard].”

10



Sample student comments:

“Not much difference [between Blackboard and Stellar Gradebooks], really...”
“Classic Stellar was a lot more clear. “

“The grade display was better than classic Stellar, since team assignment grades were shared
among all members.”

C. Membership Management

Membership management is a feature that is used exclusively by course administrators.

= 67% of administrators described the management of participant/staff lists as difficult
=  46% of administrators chose to use the Blackboard Groups tool to organize students

= 77% of Groups tool administrators reported that the tool did not satisfy their needs

Sample comments:

“In one of our courses, | tried to set up [membership] groups but wasn't able to set it so students
could switch to another group. Because of this that course had to be switched back to current
Stellar.”

“Tried to create 5 (sections) under groups so that students could switch between (sections). Couldn’t
figure out.”

777

“Group lists/student names are alpha by first name only...[Can’t] sort users by ‘role
D. Course modules

Blackboard course support modules received mixed reviews, but approval rates were unimpressive
overall:

= Announcements: considered useful by 62% of admins and 55% of students

= Calendar: considered useful by 23% of admins and 37% of students

= Journals and blogs: considered useful by 38% of admins and 31% of students

=  What’s New alerts: considered useful by 24% of admins and 37% of students

= Needs Attention alerts: considered useful by 18% of admins and 34% of students

Sample administrator comments:

"I liked the visual layout of the home page with access to different functions (I kept track of forum
entries, for example). | appreciated that there were many new functions for me to try."

“There are many calendar functionalities from Stellar that haven't been integrated [in Blackboard].”
“I didn't use these features except for announcements.”

11



Sample student comments:

“The blogs were great. | liked reading other student's responses to books.”
“Only thing | really used was the announcements.”

“Too much redundancy of information.”

CONCLUSION

The majority of users found Blackboard more difficult to use and administer than Stellar. Users
reached this conclusion in spite of the fact that the version of Blackboard 9.1 implemented at MIT
was heavily customized to follow a workflow logic closely paralleling that of Stellar. In addition to
following and complementing Stellar workflow as closely as possible, the application Ul was also
customized to present a look and feel that was consistent with the production Stellar environment.
User dissatisfaction appeared to be less a function of the dissonance commonly associated with
product migration experiences and more the result of key functional and usability shortcomings
associated with the core product. The user feedback collected adds an additional and significant
dimension to the argument that Blackboard would not be an optimal LMS choice for MIT at the
current time.

12



Part lll: RECOMMENDATION

Based on the information presented in the preceding sections, the recommendation at this time is
to halt further experimentation with the Blackboard platform and shift resources to the continuing
development of the Modular Service Framework, which is intended to gradually replace existing
Sakai-2 based Stellar functionality with a set of discrete, flexible web services driven by a common
data framework and based on a standardized set of APlIs.

As existing core Stellar services are functionally accounted for with the Modular Service Framework,
focus can increasingly shift to the integration of value-added functionality satisfying specific unmet
or emerging user needs. Such functionality may be developed in-house or, where adequately
represented by existing compatible third-party functionality, incorporated within the framework.
This focus on flexibility and integration positions the model well for MIT’s future needs, including
the technological evolution mandated by Digital MIT, as well as emerging trends in curriculum
development and online education.

In this model, key functional components are represented by individual web services that can be
utilized as either standalone modules or as part of an integrated set of user tools. These web
services are driven by common core data sets, and share common standardized APIs. This aspect of
the model eases integration and interoperability with community-developed and third-party tools,
as long as such tools are compatible with the published API model. Such an approach encourages
community innovation while balancing individual customizability and extensibility with service
standardization and the reduction of support overhead.

This approach also facilitates a gradual and user-friendly approach to upgrading legacy Stellar
functionality by separating core functional components from the architectural core while
maintaining interoperability between components. In an optimal scenario, the Stellar core would
over time be simplified to a document and material management framework extended by an
interoperating set of web services sharing common APIs. These services would be recombined as
dictated by the instant pedagogical and/or administrative scenario, and presented to the user
within a simple and customizable module-based framework.

Current planning projects a 48-month delivery trajectory to the initial core components of the
Modular Service Framework. This core set of components includes grading, attendance,
calendaring, content and material management, forum integration, and blog/wiki integration.
These represent existing functionality currently delivered within the Sakai-2 based Stellar
framework. Additional components would include value-added functionality identified and
prioritized via a community requirement gathering process.

The infographic on the following page represents the Modular Service Framework delivery
trajectory through FA 2013.

13



Modular Service Framework Progression
Through FA 2013

FA 2011 SP 2012

FA 2012

Release Gradebook (GB) Alpha
Gather GB Alpha feedback
Begin dev on Attendance Tool (AT)

Release GB Beta

Process GB Alpha feedback
Gather GB Beta feedback
Release AT Alpha

Gather AT Alpha feedback

Launch GB 1.0 Launch AT 1.0 Launch SP 1.0

Release AT Beta Release Student Photos (SP) 0.5 Release CT Alpha

Process AT Alpha feedback Gather SP 0.5 feedback Gather CT Alpha feedback
Gather AT Beta feedback Begin dev on Calendering tool (CT)

= |nitial planned functionality includes grading, attendance, student photos, calendering, course materials, and images

= Targeting 1 pre-release and 1 full release per semester starting FA 2012

= Pre-release feedback gathered at end of term, reflected in successive releases

= Redundant Stellar functionality decommissioned step-by-step

= Specific service progression subject to change



	BB exp report cover
	BB exp report body
	MSF initial

