Excerpt |
---|
A mathematical approximation to the restoring behavior of springs and other elastic solids under small deformations. |
Motivation for ConceptElastic objects are objects which rebound to their original shape from a temporary deformation. All solids are basically elastic under small deformations, but "small" is a relative term. A metal ball, for instance, is only elastic for deformations that are so small as to be invisible to the naked eye. If you press the ball hard enough to deform it noticeably, it will retain a dent. A rubber ball is elastic under a much wider range of deformations, and can have its shape noticeably changed without causing a permanent dent. The elastic properties of objects is vital to understanding the engineering of all structures, from airplanes to skyscrapers. As such, Hooke's description of the restoring force produced by an object undergoing elastic deformation is an extremely useful piece of mathematics, and has acquired the title "Hooke's Law", even though it is not a universal Law in the same sense as, e.g. Newton's 2nd Law or his law of universal gravitation. Hooke's "Law" is really a parameterization which is only valid for deformations small enough that the object is in the elastic regime. This fact does not detract from its enormous utility, since keeping structural members in an elastic state is often a goal in engineering. Objects experiencing elastic deformation are said to "obey Hooke's Law". In introductory mechanics, Hooke's Law is most frequently used to describe the resoring force of springs, which are objects designed to "spread out" large deformations over a series of coils, so that the complete object can change shape dramatically while each portion of the coil deforms only a relatively small amount. Hooke's Law in terms of ForceMathematical Statement of the LawAs applied to springs, Hooke's Law is generally stated for a spring which has one end fixed. For that case, the restoring force acting on the other end of the spring when it is moved by stretching or compressing the spring along its length (taken to be the x-direction) will be given by: |