You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »

Elastic Potential Energy

Assuming an object attached to a spring that obeys Hooke's Law with the motion confined to the x direction, it is customary to choose the coordinates such that x = 0 when the object is in a position such that the spring is at its natural length. The force on the object from the spring is then:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {F}

= - kx \hat

Unknown macro: {x}

]\end

It is also customary to make the assignment:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ U(0) \equiv 0]\end

Thus, the potential can be defined:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ U = U(0) - \int_

Unknown macro: {0}

^

Unknown macro: {x}

(-kx)\:dx = \frac

Unknown macro: {1}
Unknown macro: {2}

kx^

]\end

For an object moving under the influence of a spring only, the associated potential energy curve would then be:

POTENTIAL ENERGY CURVE

The graph indicates the presence of one stable equilibrium point at x = 0.

  • No labels